The correct options are
A fn(x)ddx{fn−1(x)}
B fn(x)fn−1(x)⋯f2(x).f1(x)
ddx{fn(x)}=ddx{efn−1(x)}
⇒efn−1(x)ddx{fn−1(x)}=fn(x)ddx{fn−1(x)}
⇒fn(x).ddx{efn−2(x)}=fn(x).efn−2(x)ddx{fn−2(x)}
⇒fn(x)fn−1(x)ddx{fn−2(x)}
⋯
⇒fn(x)fn−1(x)⋯f2(x)ddx{f1(x)}
⇒fn(x)fn−1(x)⋯f2(x)ddx{ef0(x)}
⇒fn(x)fn−1(x)⋯f2(x)ef0(x)ddx{f0(x)}
Use ef0(x)=f1(x) and f0(x)=x
Hence,
ddx{fn(x)}=fn(x)fn−1(x)...f2(x)f1(x)
Hence, option C is correct.