f(θ)=sin2θ+sin2(θ+2π3)+sin2(θ+4π3) then f(π15) is equal to
2/3
3/2
1/3
1
f(θ)=sin2θ+sin2(θ+2π3)+sin2(θ+4π3) =12[3−cos2θ−cos(4π3+2θ)−cosθ(8π3+2θ)] =12(3−cos2θ−2cos(2π+2θ)(cos2π3)) =12(3−cos 2θ+cos 2θ)=32 f(π15)=32
If f(θ)=sin2θ+sin2(θ+2π3)+sin2(θ+4π3),thenf(π15)