Let the given equation be:
lim x→1 f( x )−2 x 2 −1 =π
We have to find the value of lim x→1 f( x ) .
By further expanding the limits:
lim x→1 ( f( x )−2 ) lim x→1 ( x 2 −1 ) =π
On simplification, we get
lim x→1 ( f( x )−2 )=π lim x→1 ( x 2 −1 ) lim x→1 f( x )− lim x→1 ( 2 )=π( 1 2 −1 ) lim x→1 f( x )− lim x→1 2=0
On arranging the terms, we get
lim x→1 f( x )= lim x→1 2 lim x→1 f( x )=2
Thus, the value of lim x→1 f( x )=2 .