We knowthat ∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx and ∫f(ax+b)dx=F(ax+b)a+c, where ∫f(x)dx=F(x)
We will solve this problem using these two theorems on integration.
We know that ∫sinxdx=−cosx and ∫cosxdx=sinx.
We have,
f(x) = 36 ∫[sin(2x)+cos(3x)]dx
=∫sin(2x)dx+∫cos(3x)dx
∫sin(2x)dx=−cos2x2 and ∫cos(3x)dx=sin3x3
⇒36∫[sin(2x)+cos(3x)]dx=36sin3x3+36−cos2x2
=12sin(3x)−18cos(2x)+c.
=12sin(3x)−18cos(2x) [Since c = 0]
⇒f(π)=12sin(3π)−18cos(2π)=12×0−18×1=−18