The correct option is A is monotonically increasing
Here, f(x)=4tanx−tan2x+tan3x
⇒f′(x)=4sec2x−2tanxsec2x+3tan2xsec2x
=sec2x(4−2tanx+3tan2x)
=3sec2x{tan2x−23tanx+43}
=3sec2x{(tanx−13)2+(43−19)}
=3sec2x{(tanx−13)2+119}>0,∀x
Therefore, f(x) is increasing for all x∈ domain.