The correct option is A a0=0,a3=3
f(x)=a0+a1x+a2x2+a3x3+a4x4+a5x5
limx→0[1+f(x)x2]1/x=e3
⇒elimx→0f(x)x3=e3 [1∞ form]
limx→0f(x)x3=3
limx→0a0+a1x+a2x2+a3x3+a4x4+a5x5x3=3
limx→0a0x3+a1x2+a2x+a3+a4x+a5x2=3
Therefore, for limit to exist at x=0,a0=a1=a2=0 and a3=3 whereas a4 and a5 can take any real values.