The correct options are
A a=19
B a=24
C f(x)=0 has atleast one repeated root.
3∑i,j,k=1i≠j≠kxixj+xk=32
⇒x1x2+x3+x2x1+x3+x3x1+x2=32
⇒x1x2+x3+1+x2x1+x3+1+x3x1+x2+1=92
⇒(x1+x2+x3)(1x2+x3+1x1+x3+1x1+x2)=92
.....(1)
Now, consider three numbers x1+x2, x2+x3 and x3+x1.
By using A.M.≥H.M.
(x1+x2)+(x2+x3)+(x3+x1)3≥31x2+x3+1x1+x3+1x1+x2
⇒(x1+x2+x3)(1x2+x3+1x1+x3+1x1+x2)≥92
.....(2)
From eqn (1) & (2),
A.M.=H.M.
Hence, all the roots of f(x)=0 are equal.
∴x1=x2=x3=k
Now, f(x)=ax3+bx2+cx−3=0
⇒x1+x2+x3=−ba ...(3)
⇒x1x2x3=3a ...(4)
When k=12⇒a=24
k=3⇒a=19
Since, xi>0⇒a>0 [from eqn(4)]
Hence, from eqn(3), b<0