f(x)={x2 x≤ x0ax+b, x>x0. If f(x) is differentiable at x0. Then
For f(x) to be diffrentiable at x0 f(x) sould be continuous at x0 and LHD& RHD of f(x) at x0 should be
equal.
Therefore, limx→ x0=x20
limx→ x 0+=ax0+b
⇒ x20=ax0+b.....(1)
LHD ⇒ limx→x−0=(x0+h)2−x20hlimx→0−=x20+2hx0+h2−x2h
=limx→ 0−=hh(2x0+h)=2x0
RHD,limh→ 0+=ah+b−bh=alimh→ 0hh=a
∴ LHD=RHD⇒ a=2x0......(2)
Substituting (2) in (1)
x20=ax0+b
x20=2ax20+b
⇒ b=−x20.
∴ a=2x0, b=−x20
Answer option -b