The correct option is B False
Given that f(x)=x3−6x2+11x−6x−3 ∀ x∈R
⇒f(x)=x3−5x2−x2+6x+5x−6x−3
⇒f(x)=x3−x2+6x−6−5x2+5xx−3
⇒f(x)=x2(x−1)+6(x−1)−5x(x−1)x−3
⇒f(x)=(x−1)(x2−5x+6)x−3
⇒f(x)=(x−1)(x−2)(x−3)x−3
⇒x≠3
f(x) is undefined at x=3
A polynomial function has to be defined ∀x∈R
∴f(x) is not polynomial function for all real x