The correct options are
A f(1+)+f(1−)+f(1)=32 B f(1+)+f(−1−)=0 C f(−1+)+f(−1−)=−1f(x)=limn→∞xx2n+1
f(1+)=limn→∞xx2n+1(x=p;p>1)
=1p∞+1=1∞=0
f(1−)=limn→∞1(1q)2n+1(x=1q;q>1)
=1q∞+1=10+1=1
f(1)=limn→∞112n+1=limn→∞11+1=12
f(−1+)=limn→∞−1(−1r)2n+1(r>1)
as x→−1+
−1<x<0
x=−15
=−10+1=−1
f(−1−)=limn→∞−1(−5)2n+1(x=−5;5>1)
=−1−∞=0
From above function values
B,C,D are the correct options.