The correct option is D x3+2x2+x+2
HCF×LCM=f(x)×g(x)
g(x)=1×(x2−4)(x4−1)x3−2x2−x+2,f(x)=x3−2x2−x+2; (x−1) is a factor of f(x),
∴x3−2x2−x+2
=x2(x−1)−x(x−1)−2(x−1)
=(x−1)(x2−x−2)
=(x−1)(x−2)(x+1)
∴g(x)=(x−2)(x+2)(x+1)(x2+1)(x−1)(x−1)(x−2)(x+1)
⇒g(x)=(x+2)(x2+1)
⇒g(x)=x3+2x2+x+2