The given integral is,
I= ∫ 0 a f( x )g( x )dx (1)
On solving integral, we get,
I= ∫ 0 a f( x )g( x )dx = ∫ 0 a f( a−x )g( a−x )dx (2)
Adding equation (1) and (2),
I+I= ∫ 0 a f( x )g( x )dx + ∫ 0 a f( x )g( a−x )dx 2I= ∫ 0 a f( x )( g( x )+g( a−x ) )dx
It is given that,
g(x)+g( a−x )=4.
2I= ∫ 0 a f( x )( g( x )+g( a−x ) )dx 2I= ∫ 0 a 4×f( x )dx I=2 ∫ 0 a f( x )dx
Hence, it is proved that ∫ 0 a f( x )g( x )dx =2 ∫ 0 a f( x )dx .
By using properties of definite integrals, evaluate the integrals Show that ∫a0f(x)g(x)dx=2∫a0f(x)dx, if f and g are defined asf(x)=f(a−x) and g(x)+g(a−x)=4
Show that if f and g are defined as and