f(x) has third continuous derivative and limx→01+x+f(x)x1x=e3, then f'''(x) is
x2
3x2
2x2
None of these
Explanation for the correct option:
Step 1. Evaluate the given equation:
Given, limx→01+x+f(x)x1x=e3
⇒ limx→01+x+f(x)x1x =limx→01+x3x ∵limx→0(1+x)nx=en
⇒ limx→01+x+f(x)x1x =limx→01+x31x
⇒ 1+x+f(x)x=1+x3
=1+x3+3x2+3x ∵(a+b)3=a3+b3+3a2b+3ab2
⇒ f(x)x=1+x3+3x2+3x-x-1
⇒ f(x)x=x3+3x2+2x
⇒ f(x)=xx3+3x2+2x
=x4+3x3+2x2
Step 2. Find the value of f'(x),f''(x) and f'''(x)
f'(x)=4x3+9x2+4x
f''(x)=12x2+18x+4
f'''(x)=24x+18
Hence, Option ‘D’ is Correct.