wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

f(x)=e3xe2xtlntdtx>0.
Find derivative of f(x) w.r.t. ln x when x=ln 2

Open in App
Solution

f(x)=b(x)a(x)g(t)dt)
leibnitz formula isd(f(x))dx=ddx(b(x)).g(b(x))ddx(a(x)).g(a(x))
Here g(t)=tlnt
so d(f(x))dx=3e3x.e3x3x2e2x.e2x2x=e6xe4xx
derivative w.r.t. lnx is d(f(x))d(lnx) =d(f(x))dx.dxd(lnx)
d(f(x))d(lnx)= e6xe4xx.x=e6xe4x
Now putting the value of x=ln2 we get
d(f(x))d(lnx)= e6ln2e4ln2=2624=48

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon