f(x) is a differentiable function satisfying the relation f(x)=x2+∫x0e−tf(x−t)dt, then
960
f(x)=x2+∫x0e−tf(x−t)dt=x2+∫x0e−(x−t)f(t)dt=x2+e−x∫x0etf(t)dt∴exf(x)=x2ex+∫x0etf(t)dt
Differentiating both sides w.r.tx
exf(x)+exf′(x)=2xex+x2ex+exf(x)∴f′(x)=2x+x2∴f(x)=x2+x33+cf(0)=0⇒c=0∴f(x)=x2+x33∴∑9k=1f(k)=9.10.196+91.10012=960