f(x)=⎧⎪⎨⎪⎩2x+2−16if x≠24x−16kif x=2at x=2
If f(x) is continuous at x=2, then find the value of k.
We have, f(x)={2x+2−164x−16if x≠2kif x=2
Since, f(x) is continuous at x=2.
∴ LHL = RHL =f(2)
At x=2,
limx→22x.22−244x−42=limx→24.(2x−4)(2x)−(4)2=limx→24.(2x−4)(2x−4)(2x+4) [∵a2−b2=(a+b)(a−b)]=limx→24(2x+4=48=12
But f(2)=k
∴k=12