f(x) = ⎧⎪⎨⎪⎩3, if 0≤x<14, if 1<x<35, if 3≤x≤10
Here, f(x) = ⎧⎪⎨⎪⎩3, if 0≤x<14, if 1<x<35, if 3≤x≤10
for x > 1, f(x) = x + 1 and x < 1, f(x) = x2 + 1 iare constant funtions, so it is continuous in the above interval. so we have to check the continuity at x = 1,3.
At x=1, LHL = limx→1− f(x) = limx→1− (3) = 3, RHL = limx→1+ f(x) = limx→1+ (4) = 4
LHL ≠ RHL.
Thus, f(x) is discontinuous at x=1.
At x=1, LHL = limx→3− f(x) = limx→3− (4) = 4, RHL = limx→1+ f(x) = limx→3+ (5) = 5
∴ LHL ≠ RHL. Thus, f(x) is continuous everywhere except at x=1,3