The correct option is A f(x) is continuous at x=0
LHL=limx→0−sinx−sinx×cosxx3cosx=limx→0−sinx(1−cosx)x3cosx=limx→0−sinxx×limx→0−2sin2x2(x2)2×4×limx→0−1cosx=1×24×11=12
RHL=limx→0+cot−1x−cos−1xx3 [00 form]=limx→0+−11+x2+1√1−x23x2=limx→0+(1+x2)2−(1−x2)3x2(√1−x2)(1+x2)×1(1+x2)+√1−x2=limx→0+x2+33(√1−x2)(1+x2)×1(1+x2)+√1−x2=33×1×1×11+1=12
f(a)=f(0)=12
⇒LHL=RHL=f(a)∴f(x) is continuous at x=0