f(x) {k cos xπ−2x,if x≠π23, if x=π2.
Here, f(x) {k cos xπ−2x,if x≠π23, if x=π2.
∴LHL=limx→π12f(x)=LHL=limx→π12k cos xπ−2x
Putting x=π2-h as x→π2 when h→0
limx→0k cos(π2−h)π−2(π2−h)limx→0k sin h2h
=limx→0k2×sinhh=k2×1=k2 ∵limx→0sin xx=1
∴RHL=limx→π+/2f(x)=LHL=limx→π+/2k cos xπ−2x
Putting x=π2-h as x→π+2 when h→0
limx→0k cos(π2+h)π−2(π2+h)limx→0k sin h−2h=limx→0k2×sinhh=k2×1=k2 ∵limx→0sin xx=1
Also, π2=3Since,f(x)iscontinuousatx=π2
∴ LHL=RHL= fπ2=k2=3⇒k=6