f(x)=⎧⎨⎩√1+kx−√1−kxx,if −1≤x<02x+1x−1,if 0≤x≤1at x=0
What is the value of k if the function is continuous at all points?
We have, f(x)=⎧⎨⎩√1+kx−√1−kxx,if −1≤x<02x+1x−1,if 0≤x≤1at x=0
∴ LHL =limx→0−√1+kx−√1−kxx=limx→0−(√1+kx−√1−kxx).(√1+kx+√1−kx√1+kx+√1−kx)=limx→0−1+kx−1+kxx[√1+kx+√1−kx]limh→02k√1+k(0−h)+√1−k(0−h)=limh→02k√1−kh+√1+kh=2k2=k
f(0)=2×0+10−1=−1
⇒k=−1 [∵ LHL=RHL = f(0)]