f(x)=⎧⎨⎩|x−4|2(x−4),if x≠40,if x=4
Is the function f(x) continuous at x=0?
We have, f(x)=⎧⎨⎩|x−4|2(x−4),if x≠40,if x=4
At x=4, LHL=limx→4−|x−4|2(x−4)=limh→0|4−h−4|2(4−h)−4=limh→0|0−h|(8−2h−8)=limh→0h−2h=−12f(4)=0≠LHL
so, f(x) is discontinuous at x=4