The correct option is
D f(x) is differentiable at
x=0At
x=0L.H.L=limx→0−f(x)=limh→0f(0−h)
=limh→0h2(e−1/h−e1/he−1/h+e1/h)
=limh→0h2(e−2/h−1e−2/h+1)
=0(0−10+1)=0
R.H.L.=limx→0+f(x)=limh→0f(0+h)
=limh→0h2(e1/h−e−1/he1/h+e−1/h)
=limh→0h2(1−e−2/h1+e−2/h)
=0(1−01+0)=0
and f(0)=0
∴L.H.L.=R.H.L.=f(0)
Hence, f(x) is continuous at x=0.
Also, L.H.D.=limh→0f(0−h)−f(0)−h
=limh→0h2e−1/h−e1/he−1/h+e1/h−0−h
=−limh→0he−2/h−1e−2/h+1=0
and R.H.D=limh→0f(0+h)−f(0)h
=limh→0h2e1/h−e−1/he1/h+e−1/h−0−h
=−limh→0h1−e−2/h1+e−2/h=0
Hence, f(x) is differentiable at x=0 and f′(0)=0