f(x)={x2sin1x,if x≠00,if x=0
We have, f(x)={x2sin1x,if x≠00,if x=0
For differentiability at x=0,
Lf′(0)=limx→0−f(x)−f(0)x−0=limx→0−x2sin1x−0x−0=limh→0(0−h)2sin(10−h)0−h=limh→0h2sin(−1h)−h=limh→0+h sin(1h) [∵sin(−θ)=−sinθ]
=0× [an oscillating number between -1 and 1 ]=0
Rf'(0)=limx→0+f(x)−f(0)x−0=limx→0+x2sin1x−0x−0=limh→0(0−h)2sin(10+h)0+h=limh→0h2sin(1h)h
=0× [an oscillating number between -1 and 1 ]=0
∵Lf′(0)=Rf′(0)
So, f(x) is differentiable at x=0