f(x)={|x−a|sin1x−a,if x≠00,if x=aat x=a
Check if f(x) is continuous at x=a.
We have, f(x)={|x−a|sin1x−a,if x≠00,if x=aat x=a
At x=a,
LHL =limx→a−|x−a|sin1x−a=limh→0|a−h−a|sin(1a−h−a)=limh→0−h sin(1h)
=0× [an oscillating number between -1 and 1]=0
RHL=limx→a+|x−a|sin(1x−a)=limh→0|a+h−a|sin(1a+h−a)=limh→0h sin1h
=0× [an oscillating number between -1 and 1]=0
and f(a)=0
∴ LHL = RHL f(a)
So, f(x) is continuous at x=a