The correct option is C (−π2,π2)
f(x)−λπ/2∫0sinxcost f(t) dt=sinx⇒f(x)−λsinxπ/2∫0cost f(t) dt=sinx
⇒f(x)−Asinx=sinx
where, A=λπ/2∫0cost f(t) dt
⇒f(x)=(A+1)sinx
⇒f(t)=(A+1)sint
∴A=λπ/2∫0(A+1)costsint dt⇒A=λ(A+1)2π/2∫0sin2t dt⇒A=λ(A+1)2[−cos2t2]π/20⇒A=λ(A+1)2⇒A=λ2−λ
So,
f(x)=(λ2−λ+1)sinx⇒f(x)=(22−λ)sinx
Now, λ>2
⇒f(x)=−ksinx, (k>0)
Hence, f(x) is decreasing when sinx is increasing.
From the given options, sinx is increasing in (−π2,π2).
Therefore, f(x) is decreasing in (−π2,π2).