The correct option is D π3
f(x)=sin x (1+cos x), x∈(0,π2)∴f'(x)=cos x (1+cos x)−sin2 x⇒f'(x)=cos x+cos2 x−sin2 x⇒f'(x)=cos x+cos 2xand f''(x)=−sin x −2 sin 2xFor maximum or minimum value of f(x),f'(x)=0⇒cos x+cos 2x=0⇒cos x=−cos 2x⇒cos x=cos (π±2x)⇒ x=(π±2x)⇒x=π3Now, f''(π3)=−2 sin 2π3−sin π3 =−2√32−√32=−ve.Hence, f(x) has a maxima at x=π3.