The correct option is C 2
f(x)=⎧⎪⎨⎪⎩(x2−1)(x−1)(x−2))+cosx:−∞<x<1−(x2−1)(x−1)(x−2))+cosx:1≤x<2(x2−1)(x−1)(x−2))+cosx:x≥2
Clearly f(x) is continuous everywhere.
f′(x)=⎧⎪⎨⎪⎩(4x3−9x2+2x+3)−sinx:x<1−(4x3−9x2+2x+3)−sinx:1<x<2(4x3−9x2+2x+3)−sinxx>2
At x = 1, Lf' (1) = sin 1, Rf'(1) = sin 1
At x = 2, Lf' (2) = -3-sin2, Rf'(2) = 3- sin2
∴ f(x) is not differentiable at x =2.