The correct option is
B one-one onto
f(x)=x−2sinx2f:R→Rf′(x)=1−22cosx2f′(x)=1−cosx2=1−(1−2sin2x4)=1−1+2sin2x4
f′(x)=2sin2x4
∴f′(x) will give only +ve values for all x
∴f(x) is one -one function.
f(x)=x−2sinx2
we can clearly see that Range of
f(x) will be R,
∴ co-domain of f(x)= Range of f(x)
∴f(x) is onto function.
Answer: option (B).