f(x) = [x], the greatest integer less then or equal to x and k is an integer. Then, limx→kf(x)=
does not exist
L.H.L = limx→k−f(x)=limh→0f(k−h)=limh→0[k−h]=k−1
R.H.L = limx→k+f(x)=limh→0f(k+h)=limh→0[k+h]=k
L.H.L ≠ R.H.L. The limit does not exist for integer values of k.