The correct option is C (0,1e)
f(x)=xx
Now taking y=xx (∵y=f(x))
∴logy=xlogx
Now differentiate w.r. to x
∴1ydydx=x(1x)+1⋅logx
∴dydx=y(1+logx)
=xx(1+logx)
Hence f(x)=xx(1+logx)
Now, f(x) is decreasing function.
∴f′(x)<0
∴xx(+logx)<0
∴1+logx<0
∴logx<−1
∴x<e−1
∴x<1e
∴x∈(0,1e) function f(x)=xx is decreasing function.