wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

f(y)=x2log(1x), then xd2ydx22dydx+3x2=0

A
True
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
False
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is B False
y=x2log(1x)
dydx=x2ddx(log(1x))+log(1x)ddx(x2)
dydx=x2×11xddx(1x)+log(1x)2x
dydx=x+2xlog(1x)
d2ydx2=1+2ddx(xlog(1x))
d2ydx2=1+2yx since y=x2log(1x)
xd2ydx2=x+2y
xd2ydx22dydx+3x2=x+2y2(x+2xlog(1x))+3x2
xd2ydx2=x+2y
xd2ydx22dydx+3x2=x+2y+2x2xlog(1x)+3x2
=2y+x2xlog(1x)+3x20
Hence the given statement is false.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon