We know the identity a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
Using the above identity taking a=1,b=b and c=2c, the equation 1+b3+8c3−6bc can be factorised as follows:
1+b3+8c3−6bc=(1)3+(b)3+(2c)3−3(1)(b)(2c)
=(1+b+2c)[(1)2+(b)2+(2c)2−(1×b)−(b×2c)−(2c×1)]=(1+b+2c)(1+b2+4c2−b−2bc−2c)
Hence, a+b3+8c3−6bc=(1+b+2c)(1+b2+4c2−b−2bc−2c)