12(a2+7a)2−8(a2+7a)(2a−1)−15(2a−1)2
Let (a2+7a)=x and (2a−1)=y
Then the previous equation becomes:
12x2−8xy−15y2
=12x2−18xy+10xy−15y2
=(12x2−18xy)+(10xy−15y2)
=6x(2x−3y)+5y(2x−3y)
=(6x+5y)(2x−3y)
Substituting the values of x and y:
=6(a2+7a)+5(2a−1)2(a2+7a)−3(2a−1)
=(12a2+42a+10a−5)(2a2+14a−6a+3)
(12a2+52a−5)(2a2+8a+3)