Factorise 169a4-121b2.
As we know the algebraic identity,
a2-b2=(a-b)(a+b)
So, it can be factorized by using this identity, we can write:
169a4-121b2= (13a2)2-(11b)2
= (13a2+11b)(13a2-11b)
Therefore factors of 169a4-121b2 = (13a2+11b)(13a2-11b).
Factorise the following expressions.
(i) a2 + 8a + 16
(ii) p2 − 10p + 25
(iii) 25m2 + 30m + 9
(iv) 49y2 + 84yz + 36z2
(v) 4x2 − 8x + 4
(vi) 121b2 − 88bc + 16c2
(vii) (l + m)2 − 4lm (Hint: Expand (l + m)2 first)
(viii) a4 + 2a2b2 + b4
Factorise:
50a3−2a
Factorise : 4x2−81y2