Factorise: 18x3y3−27x2y3+36x3y2
9x2y2(2xy−3y+4x)
Consider the given expression,
18x3y3−27x2y3+36x3y2...(i)
18x3y3 can be written as,
18x3y3=2×3×3×x×x×x×y×y×y...(ii)
27x2y3 can be written as,
27x2y3=3×3×3×x×x×y×y×y...(iii)
36x3y2 can be written as,
36x3y2=2×2×3×3×x×x×x×y×y...(iv)
From (ii),(iii) and (iv), the common factors are 32, x2 and y2.
Taking the common factors 32, x2 and y2 from (i), we get
18x3y3−27x2y3+36x3y2
=9x2y2(2xy−3y+4x)
⇒18x3y3−27x2y3+36x3y2=9x2y2(2xy−3y+4x)
Therefore, the factors of 18x3y3−27x2y3+36x3y2 are 9x2y2 and 2xy−3y+4x.