Factorise 2(ab+cd)−a2−b2+c2+d2
(c+d+a+b)(c+d−a−b)
Given
2(ab+cd)−a2−b2+c2+d2
Opening the bracket , we get
2ab+2cd−a2−b2+c2+d2
Re-grouping
(c2+d2+2cd)−(a2−2ab+b2)
Using (a+b)2=a2+2ab+b2 and (a−b)2=a2−2ab+b2
(c+d)2−(a+b)2
Using difference of squares , we have
(c+d+a+b)(c+d−a−b)