wiz-icon
MyQuestionIcon
MyQuestionIcon
209
You visited us 209 times! Enjoying our articles? Unlock Full Access!
Question

Factorise:
22a3+162b3+c312abc

Open in App
Solution

We know the identity a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)

Using the above identity taking a=2a, b=22b and c=c, the equation can be factorised as follows:

22a3+162b3+c312abc=(2a)3+(22b)3+(c)33(2a)(22b)(c)
=(2a+22b+c)[(2a)2+(22b)2+(c)2(2a×22b)(22b×c)(c×2a)]
=(2a+22b+c)(2a2+8b2+c24ab+22bc2ca)

Hence, 22a3+162b3+c312abc=(2a+22b+c)(2a2+8b2+c24ab+22bc2ca)


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorization of Polynomials
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon