We transform this to the form
(√2a)3+(2b)3+(−3c)3−3(√2a)(2b)(−3c)
This is in the standard form x3+y3+z3−3xyz, where x=√2a,y=2b and z=−3c.
Using the identity
x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)
we obtain
√2a3+8b3−27c3+18√2abc=[(√2a)+2b−3c][(√2a)2+(2b)2+(−3c)2−(√2a)(2b)−(2b)(−3c)−(−3c)(√2a)]
This simplifies to
2√2a3+8b3−27c3+18√2abc=[√2a+2b−3c][2a2+4b2+9c2−2√2ab+6bc+3√2a]