27x3−1331y3=(3x)3−(11y)3As we know that,
a3−b3=(a−b)(a2−ab+b2)
Here, in the given expression,
a=3x,b=11y
∴27x3−1331y3
=(3x)3−(11y)3
=(3x−11y)((3x)2+(3x)(11y)+(11y)2)
=(3x−11y)(9x2+33xy+121y2)
Thus 27x3−1331y3=(3x−11y)(9x2+33xy+121y2).
Hence the correct answer is (3x−11y)(9x2+33xy+121y2).