Factorise : 2x3−3x2−17x+30
We have, 2x3−3x2−17x+30
=2x3−4x2+x2−2x−15x+30 [∵−3x2=−4x2+x2,−17x=−2x−15x]
=2x2(x−2)+x(x−2)−15(x−2)
=(x−2)(2x2+x−15)
=(x−2)(2x2+6x−5x−15) [∵x=6x−5x]
=(x−2)[2x(x+3)−5(x+3)]
=(x−2)(x+3)(2x−5)
Factorise 2x^3-3x^2-17x+30
Using the FActor theroem, show that: (i) (x-2) is a factor fo x3−2x2−9x+18 Hence factories the expression (ii) (x+5) is a factor of2x3+5x2−28x−15 Hence factorise fthe expression 2x3+5x2−28x−18 completely. (iii) (3x+2) is a factor fo 3x3+2x2−3x−2. Hence factorise the expression 3x3+2x2−3x−2 completely
Factorise:
6x2−17x−3