In the given equation 3x4+12y4 or 3(x4+4y4), add and subtract 4x2y2 to make it a perfect square as shown below:
4x4+81y4=3[(x4+4y4+4x2y2)−4x2y2]=3{[(x2)2+(2y2)2+2(x2)(2y2)]−4x2y2}=3[(x2+2y2)2−4x2y2]
(using the identity (a+b)2=a2+b2+2ab)
We also know the identity a2−b2=(a+b)(a−b), therefore,
Using the above identity, the equation (x2+2y2)2−4x2y2can be factorised as follows:
3[(x2+2y2)2−4x2y2]=3[(x2+2y2)2−(2xy)2]=3[(x2+2y2+2xy)(x2+2y2−2xy)]
Hence, 3x4+12y4=3[(x2+2y2+2xy)(x2+2y2−2xy)]