In the given equation 4x4+81y4, add and subtract 36x2y2 to make it a perfect square as shown below:
4x4+81y4=(4x4+81y4+36x2y2)−36x2y2=[(2x2)2+(9y2)2+2(2x2)(9y2)]−36x2y2=(2x2+9y2)2−36x2y2
(using the identity (a+b)2=a2+b2+2ab)
We also know the identity a2−b2=(a+b)(a−b), therefore,
Using the above identity, the equation (2x2+9y2)2−36x2y2can be factorised as follows:
(2x2+9y2)2−36x2y2=(2x2+9y2)2−(6xy)2=(2x2+9y2+6xy)(2x2+9y2−6xy)
Hence, 4x4+81y4=(2x2+9y2+6xy)(2x2+9y2−6xy)