wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Factorise:
8a3+125b364c3+120abc

Open in App
Solution

We know the identity a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)

Using the above identity taking a=2a,b=5b and c=4c, the equation 8a3+125b364c3+120abc can be factorised as follows:

8a3+125b364c3+120abc=(2a)3+(5b)3+(4c)33(2a)(5b)(4c)
=(2a+5b4c)[(2a)2+(5b)2+(4c)2(2a×5b)(5b×4c)(4c×2a)]
=(2a+5b4c)(4a2+25b2+16c210ab+20bc+8ca)

Hence, 8a3+125b364c3+120abc=(2a+5b4c)(4a2+25b2+16c210ab+20bc+8ca)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon