Factorise : (a2−b2) c+(b2−c2)a
(a2−b2) c+(b2−c2) a=a2c−b2c+ab2−ac2=a2c−ac2+ab2−b2c=ac(a−c)+b2(a−c)=(a−c)(ac+b2)
In a ΔABC, prove that (b2−c2)cot a+(c2−a2)cot B+(a2−b2)cot C=0.
In any ΔABC, prove that
(b2−c2) cot A+(c2−a2) cot B+(A2−B2) cot C=0