The correct option is
A (a−b+1)( a2+b2+ab−a+b+1)We factorize the given expression
a3−b3+1+3ab as shown below:
a3−b3+1+3ab=a3+(−b)3+13+3(a×−b×1)=(a+(−b)+1)(a2+(−b)2+12−a(−b)−(−b)(1)−1(a))(∵x3+y3+z3+3abc=(x+y+z)(x2+y2+z2−xy−yz−zx))=(a−b+1)(a2+b2+1+ab+b−a)
Hence, a3−b3+1+3ab=(a−b+1)(a2+b2+ab−a+b+1)