We know the identity a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
Using the above identity taking a=a,b=−b and c=2c, the equation a3−b3+8c3+6abc can be factorised as follows:
a3−b3+8c3+6abc=(a3)+(−b)3+(2c)3−3(a)(−b)(2c)
=[a+(−b)+(2c)][a2+(−b)2+(2c)2−(a×−b)−(−b×2c)−(2c×a)]
=(a−b+2c)(a2+b2+4c2+ab+2bc−2ca)
Hence, a3−b3+8c3+6abc=(a−b+2c)(a2+b2+4c2+ab+2bc−2ca)