We know the identity a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
Using the above identity taking a=a,b=−b and c=−c, the equation a3−b3−c3−3abc can be factorised as follows:
a3−b3−c3−3abc=(a3)+(−b)3+(−c)3−3(a)(−b)(c)
=[a+(−b)+(−c)][a2+(−b)2+(−c)2−(a×−b)−(−b×−c)−(−c×a)]
=(a−b−c)(a2+b2+c2+ab−bc+ca)
Hence, a3−b3−c3−3abc=(a−b−c)(a2+b2+c2+ab−bc+ca)