Factorise: a8−2a4b4+b8
[(a2−b2)(a+b)(a−b)]2
[(a2+b2)(a+b)(a−b)]2
[(a+b2)(a+b)(a−b)]2
[(a2+b)(a+b)(a−b)]2
Using Identity: (A−B)2=A2−2AB+B2 We can say, A=a4 and B=b4 ⇒a8−2a4b4+b8=(a4−b4)2 =[(a2+b2)(a2−b2)]2 =[(a2+b2)(a+b)(a−b)]2
Factorise the term a2+bc+ab+ac
In a much-simplified form, the given algebraic expression could be written as:(a2 + ab + b2)(a − b)