Factorise :
(i) 15(5x−4)2−10(5x−4)(ii) 3a2x−bx+3a2−b(iii) b(c−d)2+a(d−c)+3(c−d)(iv) ax2+b2y−ab2−x2y(v) 1−3x−3y−4(x+y)2
(i) 15(5x−4)2−10(5x−4)=5(5x−4)[3(5x−4)2−2]=5(5x−4)[3(25x2−40x+16)−2]=5(5x−4)(75x2−120x+46)(ii) 3a2x−bx+3a2−b=x(3a2−b)+1(3a2−b)=(x+1)(3a2−b)(iii) b(c−d)2+a(d−c)+3(c−d)=b(c−d)2−a(c−d)+3(c−d)=(c−d)[b(c−d)−a+3]=(c−d)(bc−bd−a+3)(iv) ax2+b2y−ab2−x2y=ax2−ab2+b2y−x2y=a(x2−b2)+y(b2−x2)=a(x2−b2)−y(x2−b2)=(x2−b2)(a−y)=(x−b)(x+b)(a−y)(v) 1−3x−3y−4(x+y)2=1−3(x+y)−4(x+y)2=1−4(x+y)+(x+y)−4(x+y)2=1[1−4(x+y)]+(x+y)[1−4(x+y)]=[1−4x−4y](1+x+y)