Factorise :
(i) a2−23a+42.(ii) a2−23a−108(iii) 1−18x−63x2(iv) 5x2−4xy−12y2(v) x(3x+14)+8(vi) 5−4x(1+3x)(vii) x2y2−3xy−40(viii) (3x−2y)2−5(3x−2y)−24(ix) 12(a+b)2−(a+b)−35
(i) a2−23a+42.[42=21×2 and 21+2=23]=a2−21a−2a+42=a(a−21)−2(a−21)=(a−21)(a−2)(ii) a2−23a−108=a2−27a+4a−108[27×4=108 and 27−4=23]=a(a−27)+4(a−27)=(a−27)(a+4)(iii) 1−18x−63x2=1−21x+3x−63x2=1(1−21x)+3x(1−21x)=(1−21x)(1+3x)(iv) 5x2−4xy−12y2=5x2−10xy+6xy−12y2=5x(x−2y)+6y(x−2y)=(x−2y)(5x+6y)(v) x(3x+14)+8=3x2+14x+8=3x2+12x+2x+8=3x(x+4)+2(x+4)=(x+4)(3x+2)(vi) 5−4x(1+3x)=5−4x−12x2=5−10x+6x−12x2=5(1−2x)+6x(1−2x)=(1−2x)(5+6x)(vii) x2y2−3xy−40=x2y2−8xy+5xy−40=xy(xy−8)+5(xy−8)=(xy−8)(xy+5)(viii) (3x−2y)2−5(3x−2y)−24=(3x−2y)2−8(3x−2y)+3(3x−2y)−24=(3x−2y)(3x−2y−8)+3(3x−2y−8)=(3x−2y−8)(3x−2y+3)(ix) 12(a+b)2−(a+b)−35=12(a+b)2−21(a+b)+20(a+b)−35=3(a+b)[4(a+b)−7]+5[4(a+b)−7]=(4a+4b−7)(3a+3b+5)